o

1

S i Cadn carod £ foud T NG

AD/A-006 294
A HYPOTHETICAL DIALOGUE EXHIBITING

A KNOWLEDGE BASE FOR A PROGRAM-UNDER-
STANDING SYSTEM

Cordell Green, et al

Stanford University

Prepared for:

Advanced Research Projects Agency

January 1978

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entared)

& REPORT DOCUMENTATION PAGE MR EA DITNE TRUCTIGNENN &

;: 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER i
STAN-CS=75-476 //;} £¢&§7é; 57)¥(1

3 4. TITLE (and Subtitle) 5 TV E OF REPORT & PERIOD COVEP:D

.; A HYPOTHETICAL DIALOGUE EXUIBITING A KNOWLEDGE technical, Jan. 1975 1

.';f BASE FOR A PROGRAM-UNDERSTANDING SYSTEM. 6. PERFORMING ORG. REPORT NUMBER

3 § STAN-CS-T75-476

3 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

| C. Green and D. Barstow DAHC 15-73-C-0435 g
9. PERFORMING ORGANIZAYION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK ;

i
3

. . . a AREA & WORK UNIT NUMBERS
Stanford University

Computer Science Department

Stanford, California 94305 ;
1 11, CONTROLLINC OFF{CE NAME AND ADDRESS 12. REPORT DATE o
3 ARPA/IPT, Attu: Stephen D. Crocker oy | AL
; 1400 Wilson Blvd., Arlington, Va. 22209 13. NUMBER GF PAGES

4| ;
14, MONITORING AGENCY NAME & ADDRESS(if different from Caontrolling Offica) 1S. SECURITY CLASS, (of this report) ‘
ONR Representative: Philip Surra

3 Durand Aeronautics Bldg., Rm. 165 UNCLASSIFIED ;i
E Stanford Universiuvy 15a, DECLASSIFICATION/ DOWNGRADING g
¥ q 3 SCHEDULE y
k. tanford, California 94305 i

2 16. DISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on dissemination.

" "
¥

A 17. DISTRIBUTION STATEMENT (of tha abstract entered in Block 20, if ditferant from Raport)

18. SUPFLEMENTARY NOTES

Reproducad by #

NATIONAL TECHNICAL E
INFORMATION SERVICE i

US Dopartmunt of Commerce *
Springheld, VA, 22151 E:

19. KEY WORDS (Continue on revorse ~ide if necessary and identily by block number)

e i

20. ABSTRACT (Continue on reverse side if necessary and identify by biock numbar)

A hypothetical dialogue with a fictitious program-understanding system :
ﬁ is presented. In the interactive dialogue the computer carries out a 3
detailed synthesis of a simple insertion sort program for linked lists. {
The content, length and complexity of the dialogue reflect the under-
lying programming knowledge which would be required for a system to
3 accomplish this task. The nature of the knowledge is discussed and
{ the codifi:ation of such programming knowledge is suggested as a major
5 research area in the development of program-understanding systems.

T)D FORM. 1473 EDITION OF 1 NOV 65 IS OBSQLETE ufaifSSSUBIECT TO (HANGE

‘ SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterod) .‘

it

Stanford Artificial Intelligence Labcratory JANUARY 1975
Memo AIM-258

Computer Science Department
1 Report No. STAN-CS-75-476

A Hypothetical Dialogne
Exhibiting a Knowledge Base
For a Program-Understanding System
by

Cordell Green
David Barstow

ABSTRACT

A hypothetical dialogne with a fictiious program-understanding system is presented. In
the interactive dialogue the computer carries ont a detailed synthesis of a simple insertion sort
program for linked hsts. The content, length and complexity of the dialogue reflect the
underlying programmimng knowledge which would be required for a system to accomplish this
3 task. The nature of the knowledg. is discussed and the codification of such programming
knowledge 1s suggested as a major research area in the development of program-
understanding systems.

This research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract DAHC 15.73-C.0435 . The vicws and conclusions contained in this
document are those of the author(s) and should not be interpreted as necessarily vefiresenting the
official policies, either expressed o implied, of Stanford University, ARP A, or the U.S.
Government.

Reproduced in the U.S A Available from the National Technical Information Service, S pringfield,
Virginia 22151.

l

Al N B S i i < e o R

&
: A HYPOTHETICAL DIALOGUE
: EXHIBITING A KNOWLEDGE BASE FOR A PROGRAM-UNDERSTANDING SYSTEM
Green and Barstow January, 1975
TABLE OF CONTENTS ’
INTRODUCTION |
(a) SUMMARY 1

(b) DOMAIN OF DISCOURSE 2

Il. A DIALOGUE 3
(a) INTRODUCTION 3
(b) PART 1: Setting Up the Main Tasks 5
(¢) PART 2: Synthesizing the Sclector 11
(d) PART 3: Synthesizing the Constructor 17
(e) PART 4: Completing the Program 31

. TYPES OF PROGRAMMING KNOWLEDGE 33

V. SUMMARY AND CONCLUSIONS 35

V. ACKNOWLEDGEMENTS 36

REFERENCES

INTRODUCTION

I. INTRODUCTION

(a) SUMMARY

The overall objective of our research is to gain more insight into the
programming process as a necessary step toward building program-understanding systems.
Our approach has been to exarnine the process of synthesizing very simple programs in
the domain of sorting. We hope that by beginning with this simple domain and
developing and implementing a reasonably comprehensive theory, we can then gauge
what is required to create more powerful and general program-understanding systems.

Toward this end, we are working on first isolating and codifying the xnowledge
appropriate for the synthesis and understanding of programs in this class and then
embedding this knowledge as a sct of rules in a computer program. Along the way, we
have developed some preliminary views about what a program-understarding system

should know.

Our goal in this particular paper is to present a dialogue with a #aypothetical

program-understanding system. A dialogue was chosen as a method of prescentation
that would exemplify, in an casily understood fashion, what such a system should know.
The subject of the dialogue is the synthesis of a simple insertion sort program. Each
step in the dialogue corresponds to the utilization of one or more picces of suggested
programming knowledge. Most of this knowledge is stated explicitly in cach step. The
dialogue presented here is a highly fictional one, although some portions of ihe

reasoning shown in the dialogue have been tested in an experimental system.

S oo Ll e

page 2

INTRODUCTION

We are now in the process of formulating the necessary pro ramming knowledge
8

as a set of synthesis rules. However, the scope of this paper does not include the

presentation of the current state of our rules. So far some 110 rules have been

developed and are being refined in a rule-testing system. The synthesis tasks on which

these rules are being debugged include two inscrtion sorts, one selcction sort, and a

list reversal. We hope to present in a later paper a description of the set of rules.

As will become apparent in the dialogue, one of our conjectures is that a

program-understanding systern will need very large amounts of many different kinds of

knowledge. This seems to be the key to the flexibility necessary to synthesize,

analyze, modify, and debug a large class of programs. In addition to the usual types of

programming knowledge, such as the semantics of programming languages or techniques

of local optimization, many other types are needed. These include, at least, high-level

programming constructs, strategy or planning information, domain-specific and general

programming knowledge, and global optimization techniques. In Section lll we discuss

this further and show where these kinds of knowledge occur in the dialogue.

(b) DOMAIN OF DISCOURSE

Topics mentioned in the dialogue include data structures, low-level operations,

and high-level programming constructs. The rmain data structures mentioned in our

dialogue are ordered sets represented by lists. The-low level operations mentioned

include assignment, pointer manipulation, list insertion, ete. Some of the higher-level (in

some sense) notions or constructs we consider are permutation, ordering (by various

L e el i Bt T g fat it

oo S0 i ai g i o

s

g aeig- L

cuaml bl R ' e ‘
e L2 SRS s s B s STABSRLE MR SR e e - e T i a5

INTRODUCTION page 3

criteria), set enumeration, generate and test, gencrate and process, proof by induction,
conservation of elements during a transfer, and rethods of temporary marking (or
place-saving) of positions and elements. Time and space requirements for various
methods are not discussed.

The target language is LISP, in particular the INTERLISP language [10] However,

in the dialogue we represent the programs in a fictitious meta-1 ISP,

II. A DIALOGUE

(a) INTRODUCTION

In this section we wish to exhibit what we consider to be a reasonable level of
understanding on the part of a program-understanding system. It is not obvious how
best to present this in a way that is casy for the reader to follow, since the synthesis
process is rather cornplex. We hope that an English language dialosue is adcquate. We
have added to the English several "snapshots” of the developing prograr that help to
indicate where the system is in the programming process. These diagraris are similar
to the stepwise refinements used in structured programming [1]. Our dialogue may be
considered as a continuation of the technique of presentation used oy Floyd for a
program verifier-synthesizer [2], although our more hypothetical system has been
allowed to know more about prograrm synthesis for its domain of discourse.

In certain ways we feel that the dialogue is not representative of how a

program-understanding system would appear to the user during the synthesis process

A DIALOGUE page 4

(although cuch a low-level dialogue would at times have its place). For expository
purposes the dialogue has certain choices and inferences made by the machine and

olhers made by the user. Depending upon the application, these decisions and

E inferences could reasonably be re-distributed between user and machine, with some
z made by other automated "experts”, such as an efficiency expert, and other decisions

forced by the context in which the program is written. For example, the data

structures for this insertion sort might be determined in advance if the sort routine
were part of a larger system, and all choices made by the user could be made instead
by rules calculating the efficiency of each branch. A more typical user-machine dialogue
would usually be conducted at a much higher level and in the words used to talk about
the application area for the program. But to present a hypothetical dialogue in which
the program merely said, "OK, I'm all finished," or, "l wrote a sort program as part of
your operating system,” wouldn’t explicate very much programming knowledge.

The style of the dialogue is not intended to be a strong suggestion about what
the process of specifying a program should be. In fact, we feel that program
specificaticn is a difficult problem in automatic programming research [4], and we touch
on only a few aspects of it here. However, some of the techniques used in the
dialogue will probably find some, as yet undetormined, place in program-understanding
systems. The obvious techniques include interactive specification, natural language
communication, and the periodic presentalion of summaries of the structure and content
of the evolving program.

We note that we have endowed our hypothetical system with various abilities,

: o b 2 : T
b i g = s 0 i - Ul lal ol

A DIALOGUE page 5

including an inference capability, a program simplification capability, and the ability to
illustrate and summarize where it is in the programming process. Further, the dialogue
sometimes takes on the character of a decision-tree, sometimes of goal-oriented
problem-solving, and sometimes of step-wise refinement. These all seem appropriate
to the task.

Various decisions, such as how large to make a step, when to suppress or
explicate an inference, and when to present a diagram, are somewhat arkitrary, but
were made primarily on the basis of what seemed to be the clearest exposition.

Before the start of the dialogue, we wish to remind the user that the focus is
not on the particular mechanisms which might be employed to produce the hypothesized

behavior, but rather on the reasoning itself.

(b) PART 1: Setting Up thie Main Tasks

1. User: Please write me a sort program. Use /inked lists to represent the input and
output, which are ordered sets. The output set should be ordered sc that each
element is numerically greater than the preceding element. The input set will be
called INPUT and the output set will be called OUTPUT.

2. Machine: As | understand it, a sort program produces as output a permutation
(of the input) that satisfies a test. In this case, the test is that the elements be
ordered on the basis of the above-racntioned ordering relation, "numerically

greater than". Please choose one of the two known methodsi for finding a

1 The limitation to only two "known" chaices is arbitrary, but it is reascnable to expect
a system to have a limited number of choices.

PART 1: Setting Up the Main Tasks page 6

permutation that satisfies a test:
(a) Generate and test permutations until the desired one is foLJnd.
{b) Carefully construct the desired permutation.
8. User: Carefully construct the desired permutation.
4. Machine: Should the output set be constructed in the same list cclls as the

- input set, or should a new list be created?

4 5. User: A new list should be created
6. Machine: Do you want an iterative or recursive program?

7. User: lterative. [We wish to remind the reader that the distinctions between

"user" and "machine" are somewhat arbitrary. Yet a decision must be made, so

we have chosen to let our hypothetical "user" make it. Furthermore there is no
reason to expect the user to have a preference for an iterative or recursive
program. We have our uscr choose an iterative structure over what might be a
more natural recursive structure, because there are fundamental aspects of the
algorithm which are more explicit in its iteralive form.)

8. Machine: Then the program will Le in the form of a transfer proyram which must
be torali. The program will transfer all clements from the input to positions in

the output, such that the final output is a permutation (of the input) which

satisfies the above ordering relation, namely increasing by numcrical value.

., i This does not preclude overwriting the input set during the sort. Overwriting might be
done in order to indicate which clements have been setected from the input.

i By "total", we mean that the transfer loop must be repeated until all clements have
been transferred.

Bkt et e i i i e L e R R

e
|

E PART 1: Setting Up the Main Tasks page 7

The transfer paradigmii

transfer program:
LOOP UNTIL all elements of input have been processed;

selector:
cselect the next element from input;

constructor:
add this element to output:

REPEAT.

©. Machine: In order to write such a transfer program, | must achieve several
goals:
(1) Write a sclector. On each call, the selector will find that element of
the input which comes next in the chosen transfer order. The selector

consists of two parts:
(a) selector initializer
(b) selcctor body
(2) Write a constructor. On each call, the constructor will produce a new
output (or modify the old output), so that the new element is in the
appropriate position but that otherwise the order of elements in the
output is unchanged. The constructor consists of two parts:

(a) constructor initializer

; 1 As illustrated, the transfer program has a "sclector” part and a "constructor” part.

The selector produces the elements one at a time, and the constructor builds the new
4 set. Either the selector or the constructor may re-order the set, i.c, the selector can
’ produce the elements in an order different from the stored order, or the constructor
can build a set with an ordering different from the order of receipt of the clements.

4 t We will gener-lly present in our diagrams only those parts which scem relevart ‘o
E the current conl . t.

SRS whia st d s LAl ekt e Ll b b L i i

PART 1: Setting Up the Main Tasks page 8

(b) constructor body
Before | can write these parts, | must:

(3) Select a tansfer order--the order in which the variables will be
transferred from the input to the output.

(8) Select a transfer termination method--a test that all elements have
been transfered, and a position in the program appropriate to the type of
test selected.

(5) Select a name for the transfer variable--a variable which holds as its
value the element being transferred.

After writing the parts, | must:
(6) Combine the selector, constructor and transfer termination test into

a generate and process loop. This completes the final program.

i b ot o L bl e s e G B i

PART 1: Setting Up the Main Tasks page 8

(b) constructor body
Before | can write these parts, | must:
(3) Select a ¢ransfer order--the order in which the variables will be
transferred from the input to the output.
(4) Select a transfer termination method--a test that all elements have

been transfered, and a position in the program appropriate to the type of

test selected.

(5) Select a name for the rransfer variable--a variable which holds as its
value the element being transferred

After writing the parts, | must:

(6) Combine the selector, constructor and transfer termination test into

a generate and process loop. This completes the final program.

3
v
[

S & v A e A e S R 0 v €y RN

PART 1: Setting Up the Main Tasks

The basic structure of the program (including test position)!

transfer initinlizer:
selector initializer: (1) ta)
constructor initializer: (2) (a)
transfer body:
LOOP_UNTII, DONE:
transfer termination test:
IF all elements have heen transferred
THUEN DONE;
selector hody:
cplect the next element from inputg (1) (n)
constructor body:
adet the elenent to nutput; () ()
NLPEAT;
DONE: HALT.

10. Machine: Should the transfer orcer be linear with respect to the initial order
or the final order?i

11. User: Lincar with respect to the initial order.

12. Machine: Should the transfer order be identical to the initial order or the
converse of the initial order?

13. User: |dentical

1 QOur syntax for iterative statements and exits is that proposed by Zahn [11] and
supported by Knuth [G]. Loops are exited upon encountering an crevr, such as DONE in
the above example. The program exits to the occurrence of the event iabel after the
body of the loop. Events are declared after 1002 UNTIL. REPEAT denotes the end of the

loop.

t We define the "initial" and "final" orders to be the conventional list-representation
ordering of the input set and of the desired output set, respectively. By "linear with
respect to an ordcr” we mean either identical to that order or the converse of that
order. The user’s choice of "lincar with respect to the initial order” amounts to
choosing an insertion sort algorithm, rather than a selection sort algorithm. The full
effect of this choicc will be seen when choosing the “construction re-ordering” during
the synthesis of the constructor.

o eI el R e e~ TR ok

o)

i At s
e

PART 1: Setting Up the Main Tasks page 10

14. Machine: Now let’s select a transfer terrinalion method. This will consist of a
test and a pusition for the test. Since the transfer will be total, the transfer
termination test must test whether all elements have been transferred. This is
equivalent to testing whether no elements remain to be selected. This is the
same test which is used by the selector to stop its generation of elements. | will
use this test as the transfer termination test. While writing the selector | will
thus have to write a third part: the selector termination test. Since this test
must precede a call to the sclector body, | will put the test at the beginning of
the loop.!

156. Machine:! | will use ELEMENT as the transfer variable.t

! For ease in presentation the preccding diagram showed the result of this choice (i.e.,
the test appeared in the proper location), although the choice had not yet been made.
Considering all of the tests which might have been used and all of the places where
such a test might have been put, one could imagine a great deal of planning going into
making this rather difficult decision.

t To choose meaningful variable names requires knowledge about communication with
the user and is a difficult problem.

PART 2: Synthesizing the Selector

(c) PART 2: Synthesizing the Selector

We are about to work on the indicatedi parts of the selector

transfer initializer:
selector initializer. 56 |
constructor initializer:
transfer body:
LOOP UNTIL DONE;
transfer termination test:
IF all elenents have been transferred=
all elements have been selected 1
THE}. DONE;
selector body:
select the next element from input; 71
constructor body:
add the element to output:
REPEAT;
DONE: HALT.

18. Machine: | will now choose a selection re-ordering. | will use the term "selection
re-ordering” to refer to the relation between (a) the order of the elements in
the input (positional order) and (b) the order in which the elements are selected

by the selector (temporal order). Since the transfer order is linear and forward

T Throughout this dialogue, we wiil use special characters and type fonts to indicate
different sections of these diagrams. We present the meaning of the fonts here in case
confusion arises, but the meaning should be clear from the context.

areas not under consideration

(bith » s » jindicating areas omitted)

areas currently under consideration

PROGRAM FPARTS JUST COMPLETED

RESERVEDN WOING

BASIC LISP FUNGTIONS

USER- OR MACHINE-DEFINED LABELS

= the right arrouw indicates a step in the refinement process

PART 2: Synthesizing the Selector page 12

(that is, identical to the input order), the selection re-ordering must also be
linear and forward.

17. Machine: A selector is a type of jencicion, a "total" generator that produces
each elernent of the input once and only once. Corresponding to the three parts
of a selector, this type of guncrator also has three parts:i

(1) a body which uactually produces the elements

(2) an initiclizer which can set up the generator before it is called the
first time

(3) a termination test (to be uscd as the transfer terrination test)
which tests v/hether all eleraents have been generated

18. Machine: | must now sclect the stere-saving scheme by which the generator will
save its state after cach call. In order to save its state, the gencrator must
remember Low the input set is divided into two sets:

(1) those clements which have already been generated
(2) those eclements which are yet to be generated

Recall that the gencrator is moving lincarly through the input list fror first to

last to find cach new clement. Therefore all elements before its current position

in the list have alrcady been gencrated, and all elements after its current

position are yet to be generated. To save the state of the generator, | need

I Technically, before these parts can be written, the production re-ordering for the
generator must be chowen In thiz case, it is cbviously the same as the selection re-
ordering, so we have omittcd it from the didlogue in the interests of clarity. The
initializer is written after the producer, since in gencral the form of an initializer is
dependent on the body of the loop to be initialized,

o g e

PART 2: Synthesizing the Selector page 13

F only save a marker for the generator’s current position in the input list. QOne f
pointer will be adequate for this purpose. Let us call this pointer REST. g

We are about to work on the indicated parts of the selector body 3:

transfer initializer: ?

trar.ws‘fe; hody: :d

LOUP UNTIL DONE;

selector body:
celect the next elrement from input=> !
generate the next element from input=
produce clement;
increment state of gencrator, «
REPEAT;
DONE: HALT.

19. Machine: Now | will synthesize the body of the generator. | need code for

two pieces:
(1) increment the state of the generator

(2) produce the next element

PART 2: Synthesizing the Selecter page 14

20. Machine: To increment the state of the generator, | will advance the position
pointer by one. Since the representation is a linked list, the code for this is
merely:

REST « CDR(REST)i

21. Machine: Now | will write the producer. Since the state-saving scheme uses a

pointer, REST, to separate those elements generated from those not yet
generated, and since the next clement to be generated is the first element of
the non-generated set, then the process of saving the state will also effectively
mark the next element to be generatedi To produce the next element, then, |
need merely take the first element of the non-generated set, which is pointed to
by RECT. Since the representation is linked-lists, the subprogram for this is:

ELEMENT « CAR(REST)

22. Machine: | now put the pieces of the generator body together into a block:

ELEMENT « CAR(REST);
REST «~ CDR(REST)

I Throughout, we wiil use the standard LISP terminology:

CAR(L) gives the first element of L

CDR(L) gives the remaining elements of L

CONS(X L) crcates a new list with first element X and with the rest of the
elements being those of the list L

NIL is the empty list (and list terminator)

t In a selection sort, the code to find the next element to be gencrated would be
considerably more complex since it would necd to find the largest of the remaining
elements.

 There are situations in which the value of the element or a pointer into the list might
be returned, rather than the element itself.

L R L

RTPIPPIE Ty

el Sl o i Rl R S et s Aok i g A de R Lt il b g L it e e iy i

PART 2: Synthesizing the Selector page 15

We have just finished the indicated parts

transfer initializer:
transfer bhody:
LOOP UNTIL DONE:

s selector bady:
E select the next eloment from inputs>
b generate the next element from input=
: produce nlement:
ELEMENT « CAR(REST); 78
increment state of gencrators
REST « CDR(REST); il

23. Machine: | will now write the generator initializer and the generator
termination test. Since | am using the pointer REST to mark the elements not
generated, and since initially no elements have been generated, | must initialize it

to the entire input set:

REST « INPUT

24. Machine: Now let’s write the generator termination test (which will be used
as the transfer termination test). To test whether all elements have been
generated, | will test whether there are no elements remaining. Since the
elements are being generated in a forward linear order, | simply test for being at
the end of the input list. Since the representation is a linked list, this is simply a

test for emptiness:

REST = NIL ?

B i L g e Ll) i e e . Lt oty bl e P

PART 2: Synthesizing thic Selector page 16

We have just finished the indicated parts

transfer initializer:
gselector initializer:>
generator initializer:=>

REST « INPUT; <

: transfer hody:

i LOOP UNTIL DONE;

3 transfer termination tesct:

IF all elements have heen transferred=
all elements have been selected>

b all elements have bheen generated=
no clements remain>
REST = NIL i

TIHEN DONE;
selector bhody:
select the next element from inputs
generate the next element from input=
produce elrment=>
ELEMENT « CAR(REST);
increment state of generator=
REST « CDR{REST);

26. Machine: | have finally finished the generator which the selector needed. In

fact, that is all there is to the entire selector, so the selector is finished.

PART 3: Synthesizing the Constructor page 17

(d) PART 3: Synthesizing the Constructor

We are now working on the indicated parts ot the constructor

transfer initializer:
selector initializer:
constructor imitializer: 11
transfer body:
LOOP_UNTIL, DONE;
transfer termination test:
IF all elements have been transferred=>
all elements have heen seiected
THEN DONE;
selector body:
select the next element from input;
constructor body:
add the element to out put; <1
REPEAT;
DONE: HALT,

26. Machine: One way to create an output set that is a permutation of the
elements received by the constructor is te write an inductive constructor that
satisfies the following constraints:

(1) The initial output set must be empty.

(2) Each construction operation must be such that the new output set
consists of the old set plus one new element.i

(3) After each construction operation, the new set must satisfy our
ordering relation.

27. Machine: To write such a constructor, iwo decisions must first be made:

(1) Choose a construction re-ordering.

1 It is sometimes convenient to think of the constructor as producing a sequence
of output sets, and sometimes as successively modifying one output set.

- oaiepds s 1 T ialdl

PART 3: Synthesizing the Constructor page 18

(2) Choose a construction method for building a new set, given the old
set, the rew element, and the position where the new element should
occur in the set.
After these choices are made, we will produce code for the constructor hody and
then the constructor initializer.i
28. Machine: | will now choose a construction re-ordering. | will use the term
"construction re-ordering” to refer tc the relation between (a) the order in which
the elements are received by the constructor (temporal order) and (b) the order
of the elements in the output (positional order). The re-orderings may be linear
or complex, where linear means same as or converse of. Since the order in
which the elements are received (the transfer order) is the same as the input
order, and the desired output order is not necessarily the same as (nor the
converse of) the input order, the construction re-ordering must be complex (non-
linear).t This re-ordering will be based on the “numerizally greater than" ordering
relation. This means that the correct position of each element in the output list
will be such that all preceding elements are less than or equal to the new
element and all following elements are greater than the new element.}

1 Note that we have implicitly decided that the construction consists of two steps: (1)
finding the position; (2) adding the element to the set. One might imagine schemes in
which finding a position and modifying the se! are interleaved operations.

t This choice of a complex construction re-ordering, along with the choice of a linear
selection re-ordering, completes the specification of an insertion sort, all of which
follow from the user’s choice of a transfer order “linear with respect to the initial
order".

t For clarity, we will refer throughout to an element being "less than" or "greater than"

PART 3: Synthesizing the Constructor page 19

29. Machine: Now we must select a construction method for building a new set from
the old one. The choices arc:
(a) List insertion: Modify the structure of the old list Ly inserting a new

cell containing the new element.

(b) Shifting: Allocate a new space at the beginning (or end) of the set

and shift all elements before (after) the new element by one position.

Then put the new element into the vacant place.l
(¢) Copying: Copy the old set into a new space, one cell larger than the
old space, with the new element taking up the extra position.
‘Which shall | use?
30. User: List insertion.
31. Machine: Now | will write the body of the constructor. The body consists of
two parts:
(1) a position finder, which finds the position where the new element
belongs
(2) a list inserter, Which inserts the element at this position
32. Machine: When a position has been found, there are several ways to indicate

that position. First we must sclect one of these representations for a position.

2 another element and mean that the first element precedes or follows the second
E 3 element according to the chosen ordering relation.

- ! Perhaps, since the "shifting” opcration is such an unlikely choice when lists are
being used, it shouldn't be prescnted to the user. it could be cclled forth only
upon questioning or in unusual programming contexts.

o

ne

v
 §

PART 3: Synthesizing the Constructor page 20

We are considering positions to be between two elements in a list. Since the

construction method involves inserting a new cell into the list, we must choose a

representation appropriate to insertions into linked lists. | know about two types

of such representations:

(a) Use one pointer as illustrated.

3
'
k.
4
It
b :
g
jé
3

{(position)

A liL

BEFORE

In using this representation, a special unique value for BEFORE must be used if
the correct position is at the front of the list. "FRONT" will be used for this
purpose.

(b) Use two pointers as illustrated:

{(position)

BEFORE AFTER

In using this representation, a special unique value for BEFORE must be used if
the correct position is at the front of the list. "FRONT" will be used for this
purpose. If the correct position is at the end of the list, AFTER will point to the
empty li.t.

Which shall | use?

83. User: Please use two pointers. [This choice might be based either on looking

ahead or on knowing at this point that the BEFORE pointer is useful for inserting

page 21

: PART 3: Synthesizing the Constructor

8 :
| | . = |
%. into the list and the AFTER pointer is useful for incrementing the state of the
i ¢osition iinder and for testing the correctness of a position.] ;

§
;
1

34, Machine: | need variable names for the two pointers. | will use BEFORE and

AFTER.

We arc about to work on the position finder as indicated

transfer initializer:
transfer botdy:
LOOP UNTI!, DONE;
constructor hody:
add the element to output=
find the position for the new elements 1
insert the neu element into the position;

REPEAT;
DONE: HALT,

365. Machine: | am now writing the program that finds the position. First we will

select a search strategy for searching the output list to find the correct position.

The only strategy which | know about for linked lists is a forward linear scan, so |
will use that strategy.

36. Machine: Since the scarch strategy is a forward linear scan of a finite list, the
search strategy is total; that is, all possible positions will be considered. Since
the old output set is well-ordered, and since the ordering relation applies to all
elements involved, one of these possible positions must be correct. Therefore,
the search for & correct position must succeed, and no exit will be required for

the case of not finding a correct position. So | will use a loop which consists only

PART 3: Synthesizing the Constructor page 22

of a test and exit on the correctness of the position and an incrementer. The
incrementer will increment the state of the search according to the séarch

strategy and specify the ncxt position to be considered. | will also need to

st b e s [AR i e e . SRS

initialize the loop. 1
87. Machine: Since the search strategy is forward linear, the correctness test and
the incrementer are independent. This means that the next position specified by

the incrementer does not depend on the results of the correctness test. This

1
allows a simple non-branching incrementer.i
We are about to work on the indicated parts of the position finder
transfer initialicer: ;

* 0
transfer bory:
LOOP UNTII DONE;

constructor body:

add the element to vutput>
find the pocition for the neu elements
inttialize position findor loops <i§ (2}
LOOP HNTIH. CORRECT POSITION FOUND;
IE position is correct] (3)
THEN CORRECT POSITION FOUND;
increment state and specify positions T
REPEAT;
CORRECT POSITION FOUND:
insert the neu element nto the positiong

REPEAT;
DONE: HALT.

388. Machine: Now let’s design the incrementer. First we must select a scheme for

1 If the search siralegy had becn to wse a binary chop, for example, then the next
position to be tested would be bascd on the results of the test.

PART 3: Synthesizing the Constructor page 23

represerting the state of the search. The incrementer will increment this state

and will also specify the next position to be considered.

39. Machine: Since the search strategy is a forward linear scan of the linked list,
and since the two-pointer position representation has been selected, the two ;
pointers (BEFORE and AFTER), which are already being used to represent the ‘
position, are also sufficient to remember the state.l

40. Machine: An incrementer for a forward linear scan using the two-pointer

ot Lo s

position representation requires two pieces of code: one to reset BEFORE to the

value of AFTER, and one to increment AFTER. This is adequate both for the

general case in the interior of a linked list, and in the special case at the front of
a list, where BEFORE originally has the special value "FRONT" and is reset to point
to the first cell in the list. The pieces will be put together in that order.

41. Machine: | am now writing the code to reset BEFORE to the value of AFTER.

The code to do that is:

BEFORE «~ AFTER

42. Machine: | am now writing the code to increment AFTER. Since the

representation is a linked list, the code to do that is:

AFTER « CDR(AFTER)

I The position memory and the state memory need not always be the same. For
example, if only BEFORE were used to remember the position, a good choice of state-
memory would probably include a pointer playing the same role as AFTER.

= s

T T PO R T I L PR DI et per]

PART 3: Synthesizing the Constructor page 24

43. Machine: Putting these two pieces together, we have the following

incrementer for the position findor:

BEFORE « AFTER;
AFTER « CDR(AFTER)

44. Machine: | will also need a position initializer which initializes both the state
of the position finder and the position representation to the first position
according to the search strategy.

46. Machine: Since the position representation is also used to represent the
state, we need only initialize the position representation.

46. Machine: Since the search strategy is forward linear scan, we must initialize
the position representation to the position at the front of the list. The
convention for representing the position at the front of the list is that BEFORE has
the unique value "FRONT" and that AFTER points to the entire list.

47. Machine: The code to set BEFORE to "FRONT" is:

BEFORE « "FRONT"

48. Machine: The code to set AFTER to the entire list is:

AFTER « QUTPUT

49. Machine: Putting these two pieces together, the initializer for the position

finder is:

BEFORE « "FRONT";
AFTER « OUTPUT

PART 3: Synthesizing the Constructor page 25

We have just finished the indicated parts of the position finder

transfer initialicer:
transfer bodys
LOOP_UNTIL DONE;
[] . L]
constructor body:
add the element to output=>
find the position for the new element>
initialize position finder |oop>
BEFORE « "FRONT";
AFTER « QUT PUT;
LOOP _UUNTII, CORRECT POSITION FOUND;
IF position is correct
THEN CORRECT POSITION FOUND;
increment state and specify position>
BEFORE « AFTER, i |
AFTER « CDR(AFTER); d |

ad

REPFAT,
CORRECT POSITION FOUND:
insert the neu element into the positions

B50. Machine: | will now work on the exit test for the cerrect position. | will first
try to infer the necessary pieces of this test.

51. Machine: Sin~c the set is ordered, it follows from transitivity that the new
element need not be compared against all of the elements of the set, but merely
against the elements immediately adjacent to the position being considered.

B62. Machine: Since the search strategy is forward linear scan, at any point in the
search, all of the elements occurring before the current position in the list have
already been tested and found to be less than the new element. This holds for

all positions including the initial position in which no elements occur before the

position in the list.

PART 3: Synthesizing the Constructor page 26

653. Machine: Thus, the test for correctness of position need only include a test

that all elements occurring after the current position in the list are greater than

the new element.

654. Machine: To test that all clements occurring after the current position are
greater than the new element, the prograrn must first test whether there are no
elemente occurring after the current position. Then, if there are such elements,
it must test whether all such elements are greater than the new element.

56. Machine: A test that there are no elements occurring after the current

position is simply a test whether the list pointed to by the second pointer

(AFTER) is empty:

AFTER = NIL ?

656. Machine: As noted previously, the correctness test need only consider the

immediately adjacent elements, so that a test that all elements occurring after

the current position are greater than the new element is simply a test that the
first element occurring after the currcnt position is greater than the new

element. To write such a test | need code to extract the first element from the

list pointed to by AFTER and a test whether this element is greater than the new

eiement.

87. Machine: The code to extract the first element from a list is:

CAR(AFTER)

58. Machine: The code to test whether this element is greater than the new
element is:

CAR(AFTER) > ELEMENT ?

i e e e i i

TEIIE I Y R RN R R e ey e 0

598. Machine:

PART 3: Synthesizing the Constructor

page 27

Given the two partial tests, the complete correctness test is an

ordered OR! of the two partial tests:

[AFTER =« NIL] OR [CAR(AFTER) > ELEMENT) ?

The indicated parts complete the position finder

REPEAT;
DONE:

=

|

transfer initiaiicer:

transfer borly:
LOOP_UNTIL DONE:

constructor body:
add the element to output=>

AL

-

find the position for the neit element>
initialize position finder loop>
BEFORE « "FRONT";
AFTER « QUTPUT;
LOOP UNTII, CORRECT POSITION FOUND;
IF position is correct>
no elemernts occur after position>

AFTER = NIL 1
OR next element is greater>
CAR(AFTER)> ELEMENT ‘A

THEN CORRECT POSITION FOUND:
increnrnt state and specify position>
BEFORE «~ AFTER;
AFTER « CDR(AFTER);
REPFAT;
CORRECT POSITION FOUND:
insert the neu element into the position;

80. Machine:

argument is false.

Having completed the position finder, we must now write the list

! By "ordered 0R" we mean that the second argument is evaluated only if the first

o 4 T 3

T L Y e

PART 3: Synthesizing the Constructor page 28

inserter which takes a new element, a position represented by the two-pointer
schema, and the output set, and produces a new output set with the new
element in the indicated position. The method of inserting an element into a list
depends on whether or not the indicated position is at the front of the list. | will
need to write a test to scparate the “front of the list” case from the “"anywhere
else” case, and use a diffcrent method for each case.

We are about to work on the indicated parts of the list inscrter

transfer initializer:

transfer body:

LOGP LINTII. DONE:
e o o
constructor body:
add the element to output>
find the position for the neu element;
insert the neu element into the position»

IE position is at front by |
THEN add element onto front 1
FLSE insert into interior 1
RFPEAT;
DONE: HALT,

81. Machine: A test for being at the front of the iist is a test whether the value

of the first pointer is "FRONT". The code for this is:

BEFORE = "FRONT" ?

62. Machine: The addition of the new element in the "front of the list" case

entails no replacement into the list, but instead an addition to the front of the

list. The code to do this is:

OUTPUT « CONG(ELEMENT QUTPUT)

e

PART 3: Synthesizing the Constructor page 29

63. Machine: The addition of the new element anywhere else in the list requires a
replacement into a cell in the list. The code to do this is:

CDR(BEFORE) * CONS(ELEMENT AFTER)

The marked parts complcte the element adder

transfer initializer:
e o 0
transfer body:
LOOP UNTIH. DONE:
o 0o 0
constructor body:
add the element to output>
find the position for the neu element;
insert the ncu element into the position>
IF position is at front>

BEFORE = "FRONT" i |
THEN add element onto fronts
OUTPUT «~ CONS(ELEMENT OUTPUT) 0

ELST insert into interior=
CDR(BEFORE) « CONS(ELEMENT AFTER), <}
REPEAT;
DONE: HALT.

64. Machine: Having completed the list inserter (and thus the constructor body),
we must now write the constructor initializer. Since we are writing an inductive
constructor that must begin with an empty output list, we simply set the output

list to the empty list:

OUTPUT « NIL

-, e e e e e e e e e meEeEe e e e e e EEE S e EE D" e E S S e e ® = === === o=

1 LISP programmers will recognize this as RPLACD.

i o i

|

PART 3: Synthesizing the Constructor

The initializer completes the constructor

page 30

transfer initializer:
e o o
constructor initializer=>
OUTPUT « NIL;
transfer body:

LOOP UNTIIL. DONE:

e o @
constructor body:
add the element to output=>
find the pocition for the neu clement=>
initialize position finder loop=>
BEFORE = "FRONT";
AFTER « OUTPUT;
LOOP_UNTII, CORRECT POSITION FOUND:
IF position is correct=>
no elements occur after position=>
AFTER = NIL
OR next element is greaters
CAR(AFTER) > ELEMENT
THEN CORRECT POSITION FOUND:
increment state and specify positions
BEFORE ~ AFTER;
AFTER « COR(AFTER);
REPEAT;
CORRECT POSITION FOUND:
incert the neu element into the position>
IF position is at front=
BEFORE = "FRONT"
THEN add elewent onto front=>
OUTPUT « CONS(ELEMENT OUTPUT)
EISE incert into interiors

CDR(BEFORE) ~ CONS(ELEMENT AFTER);

REPTAT;
DONE: HALT.

,‘f 685. Machine: We have now finished the constructor.

PART 4: Complcting the Program

(e) PART 4: Completing the Program

The final program

page 31

transfer initializer:
selector initializer:>
generator initializer:=»
REST « INPUT;
constructor initializer>
OUTPUT & NIL;
transfer bhody:
LOOP UNTII. DONE:;
transfer termination test:
IF all elements have been transferred>
all elements have been selected=
all elements have been generated=>
no elements remain>
REST = NIL
THEN DONE:
selector body:
select the next element from input=>
generate the next element from inputs
produce element=>
ELEMENT « CAR(REST);
increment state of generator=»
REST « CDR(REST);
constructor body:
add the element to output=>
find the position for the new element=>
initialize position finder I|oop=
BEFORE « "FRONT";
AFTER « OUTPUT;
LOOP_UNTII, CORRECT POSITION FGUND;
IF position is correct>
no elements occur after position>
AFTER = NIL
OR next element is greater=
CAR(AFTER) > ELEMENT
THEN CORRECT POSITION FOUND;
increment state and specify position>
BEFORE + AFTER;
AFTER « CDR(AFTER);

REPEAT;
CORRECT POSITION FOUND:
insert the neu element into the positions
IF position is at front>
BEFORE = "FRONT"
THEN add element onto front=
OUTPUT « CONS(ELEMENT OUTPUT)
FISE insert into interior=s
CDR(BEFORE) ~ CONS(ELEMENT AFTER);

REPEAT;
DONE: HALT,

R SR S

i et

PART 4: Completing the Program

page 32

66. Machine: Having completed the pieces of the Selector and the pieces of the

Constructor, | can assembie the pieces into the final program using a Generate

and Process paradigm with the termination test before the generator.

87. Machine: The final program, without any meta-code or comments, and its

transiation into LISP are given below:

REST « INPUT;
QUTPUT + NIL;
LOOP UNTIL DONE;
IF
REST = NIL
THEN DONE;
ELEMENT « CAR(REST);
REST + CDR(REST);
BEFORE + "FRONT";
AFTER « OUTPUT;
LOOP_UNTII, CORRECT POSITION FOUND;
IF
AFTER = NIL
DR CAR(AFTER) > ELEMENT
THEN CORRECT POSITION FOUND;
BEFORE « AFTER;
AFTER « CDR(AFTER);
REPFAT;
CORRECT POSITION FOUND:
IF
BEFORE = "FRONT"
THEN OUTPUT «
CONS(ELEMENT QUTPUT)
ELSE
CDR(BEFORE) ~
CONS(ELEMENT AFTER);
REPEAT;
DONE: MALT

| [LAMBDA NIL

f
I
I
I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
f
I
I
I

(PROG

Ll

L3

L4

L2

NIL
{SETQ QUTPUT NiL)
{(SETQ REST INPUT)

(COND
({(NULL REST)
(GO L2)))
(SETQ ELEMENT (CAR REST))
(SETQ REST (CDR REST))
(SETQ BEFORE "FRONT")
(SETQ AFTER OUTPUT)

{COND
((OR (NULL AFTER)
(GREATERP (CAR AFTER) ELEMENT))
(GO L4)))
(SETQ BEFORE AFTER)
(SETQ AFTER (CDR AFTER))
(GO L3)

(COND
((EQUAL BEFORE "FRONT")
(SETQ OUTPUT
(CONS ELEMENT QUTPUT)))
{1
(RPLACD BETORE
(CONS ELEMENT AFTER))))
(GO L)
(RETURN NIL]

R e b S

s

III. TYPES OF PROGRAMMING KNOWLEDGE

On reviewing the dialogue, we can sce that there are several types of
knowledge involved. We first note that there is significant use of a kind of strategy or
planning knowledge. On one level, we see this in steps 9 and 14, where the system
discusses what must be done to write a transfer program. In step 9 for ¢ .riple, the

sub-steps 3 and 4, where the transfer order and the transfer termination method are

chosen, are really a kind of strategy for determining the form that the basic algorithm

will take. On a different level, we see a kind of global optimization in steps 21 and 39,
where the system decides that information structures designed for onc purpose are
sufficient fcr another. In step 21, for example, the pointer originally chosen to save the
state of the selector (by marking the dividing point between those elements generated
and those not yet gencrated) is found to be adequate for the purpose of indicating the
next element to be generated. One could imagine, as an alternative to this type of
planning, the use of more conventional local optimization such as post-synthesis removal
or combination of redundant portions.

We also sce that the system makes considerable use of inference and
simplification knowledge. Infercnce plays a role in the global optimization planning
mentioned above, and also appears in steps 16 and 28, where the selection and
construction re-orderings are determined. Simplification and inference are both
apparent in steps 50 through 56, where the test for the correctness of the position
was reduced to a simple test on the variable AFTER. Simplification and inference are
also needed in step 36 wherc the system decides that an error exit (for the case of no

position being found) is unnecessary.

TYPES OF PROGRAMMING KNOWLEDGE page 34

Additionally, there are types of knowledge which are spread throughout the

dialogue. Relatively domain-specific knowledge (in this case, about sorting) s
particularly necessary in the carlier stages. Language-specific knowledge (in this case,
about LISP) is necessary when the final code is being generated. Gencral prograraming
knowledge, such as knowledge about set enumeration and linked lists, is neccssary
throughout the synthesis process. Further, one could imagine significant use of
efficiency information, although it is not present in our particular dialog.e.

The variety of types and amounts of knowledge used in the dialogue would tend
to indicate that rmuch more information is required for automatic synthesis of sorting
programs than appearcd in earlier, computer-implemented, systems for writing sort
programs [3, 7, 11]. Ruth has developed a formulation of the knowledge involved in
interchange and bubble sort programs [9). His formulation is aimed primarily at the
analycis of simple student programs in an instructional environment and the analysis task
as defined does not seem to require the same depth and generality of knowledge
suggested by our dialogue. Our intuition is that a significantly greater depth of
programming knowledge would be required to extend his formulation to a larger class of
programs. It is also interesting to compare the information involved in our dialogue to
that found in non-implemented (and not intended for machine implernentation) human-
oriented guides for sort-algorithm selection and in textbooks on sorting Martin [8]
gives methods for seiecting a good algorithr for a particular sorting problem. Those
algorithms are much more powerful than those we deal with and their derivation would

require considerably more information. We note that at the level of algorithm

TYPES OF PROGRAMMING KNOWLEDGE page 35

description presented, little explicit information is available to allow pieces of
algorithms to be fitted together or to allow slight modification of existing algorithms. A
sorting textbook such as [T], gives several orders of magnitude more information on
sorting than is required for our dialogue.

Can we measure or estimate in some way how much knowledge is nccessary for
program-understanding systems? The fact that the dialogue describing the synthesis
took some seventy steps (with some of the steps rather complex) is an indication that
considerable information is involved. From our experiments, we estimate that about
one or two hundred explicitly stated "facts" or rules would get & synthesis system
through the underlying steps of this dialogue. Furthermare, it is our guess thal at least
this much knowledge density will be required for cther similar tasks, in order to have
the flexibility necessary for the many aspec's of program understanding. Although we
are suggesting that such information must be effectively available in some form to a
system, we are not in a position to estimate how much of this information should be
stated explicitly (as, say, rules), how much should be derivable {from, say, meta-rules),

how much should be learned from experience, or available in any other fashion.

IV. SUMMARY AND CONCLUSIONS

In this papzr we have tried to exemplify and specify the knowledge appropriate

for a program-understanding system which can synthesize small programs, by presenting

a dialogue between a hypothetical version of such a system and a user. Qur conjecture

SUMMARY AND CONCLUSIONS page 36

is that uniess a system is capable of exceeding the reasoning power, and even some of
the communication abilities, exemplified by the dialogue, the system will not effectively
“understand” what it is doing well enough to synthesize, analyze, modify, and debug
programs. It appears that a system which attempts to meet this standard rmust have
targe amounts of many different kinds of knowledge. Most such programming knowledge
remains to be codified into some form of machine implementable theory. In fact, the
codification of such knowledge is one of the main research problems in program-
understanding systems.

As for our own work, in the near future we expect to refine our experimental
system until it approaches (as closely as seems useful and possible) the standard
suggested by our dialogue (but without the actual language interface). We hope then
to extend the system to deal with several different types of sorting programs. Pcrhaps
then we will be in a better position to estimate the requirem.ats of larger program-

understanding systems.

V. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the helpful suggestions given by Avra J.
Cohn, Brian P. McCune, Richard J. Waldinger, and Elaine Kant after numerous readings of
earlier drafts of this paper. Computer time for our preliminary tests was made

available by the Artificial Intelligence Center of the Stanford Research Institute.

R
.. - N

page 37

VI. REFERENCES

[1] Dahl, 0OJ, Dijkstra, EW, and Hoare, C.AR.,Structured Programming (New
York: Academic Press, Inc, 1972).

[2] Floyd, Robert W, Toward Intcractive Design of Correct Programs,
Computer Science report STAN-CS-71-235, (Stanford University, September, 1971).

[3] Green, C. Cordell, The Application of Theorem Proving to Question-
Answering Systems, Computer Sciecnce report STAN-CS-69-138, AIM-96,
AD696394,(Stanford University, August, 1269).

[4] Green, C.C, Walding:t, R.J, Barstow, DR, Elschlager, R, Lenat, D.B, McCune,
B.P, Shaw, DE, and Steinberg, LI, Progress Report on Progrum-Understanding
Systems, Computer Scienc report STAN-CS-74-444, (Stanford University, August,
1974).

(5] Knuth, Donald E., Sorting and Searching, The Art of Computer I rogramming, vol.
3 (Reading, Mass.: Addison-Wesley, 1973).

[6] Knuth, Donald E,, Structured Programming with GO TO Statements, Compting
Surveys, vol. 6 (December, 1974), 261-301. -

[7] Kowalski, RA, Predicate logic as programming language, Memo no. 70,
Dept. of Computational Logic, (University of Ecinburgh, November, 1974).

[8] Martin, William A, Sorting, Computing Surveys, vol. 3 (December, 1971), 147~
174.

[9] Ruth, Gregory R, Analysis of Algorithm Implementations, Project MAC
report MAC TR-130, (Massachu.tts institute of Technology, May, 1974).

[10] Teitelman, Warren, -2 =, INTERLISP Reference Manual, (Xerox Palo Alto
Research Centcr and Bolt Ceranck & Newman, 1974).

[11] van Emden, MH, lirst-order predicate logic as a high-level nrogram
language, Report MIP-R-106, Dept. of Machine Intelligence, (University of Edinburgh,
May, 1974).

[12] Zahn, Charles T, A Control Statement for Natural Top-down Structured
Programming, prescnted at Symposium on Programming Languages, Paris, «1974).

